Kontaktujte nás | Jazyk: čeština English
| Název: | Stability conditions for a retarded quasipolynomial and their applications | ||||||||||
| Autor: | Pekař, Libor; Prokop, Roman; Matušů, Radek | ||||||||||
| Typ dokumentu: | Recenzovaný odborný článek (English) | ||||||||||
| Zdrojový dok.: | International Journal of Mathematics and Computers in Simulation. 2010, vol. 3, issue 4, p. 90-98 | ||||||||||
| ISSN: | 1998-0159 (Sherpa/RoMEO, JCR) | ||||||||||
| 
Journal Impact
      This chart shows the development of journal-level impact metrics in time 
 | |||||||||||
| Abstrakt: | In the presented paper, we address a problem of the appropriate setting of a parameter in a selected quasipolynomial with two delay elements in order to ensure that all its zeros are located in the open left-half complex plane. The quasipolynomial can represent the dynamics of a system with internal delays and thus it can decide about system stability. In contrast to many other analyses, a non-delay real parameter is being to set. The argument principle (Mikhaylov criterion) is utilized for this purpose. Stability bounds for the parameter are found through proven lemmas, propositions and theorems. | ||||||||||
| Plný text: | http://www.naun.org/multimedia/NAUN/mcs/19-453.pdf | ||||||||||
| Zobrazit celý záznam | |||||||||||
 
