Kontaktujte nás | Jazyk: čeština English
| Název: | Rotary diffeomorphism onto manifolds with affine connection | 
| Autor: | Chudá, Hana; Mikeš, Josef; Sochor, Martin | 
| Typ dokumentu: | Článek ve sborníku (English) | 
| Zdrojový dok.: | Proceedings of the Eighteenth International Conference on Geometry, Integrability and Quantization. 2017, p. 130-137 | 
| DOI: | https://doi.org/10.7546/giq-18-2017-130-137 | 
| Abstrakt: | In this paper we will introduce a newly found knowledge above the existence and the uniqueness of isoperimetric extremals of rotation on two-dimensional (pseudo-) Riemannian manifolds and on surfaces on Euclidean space. We will obtain the fundamental equations of rotary diffeomorphisms from (pseudo-) Riemannian manifolds for twice-differentiable metric tensors onto manifolds with affine connections. | 
| Plný text: | https://projecteuclid.org/euclid.pgiq/1484362820 | 
| Zobrazit celý záznam | |
 
 
| Soubory | Velikost | Formát | Zobrazit | 
|---|---|---|---|
| K tomuto záznamu nejsou připojeny žádné soubory. | |||