Kontaktujte nás | Jazyk: čeština English
| dc.title | Comprehensive benchmarking of knowledge graph embeddings methods for Android malware detection | en |
| dc.contributor.author | Kincl, Jan | |
| dc.contributor.author | Eftimov, Tome | |
| dc.contributor.author | Viktorin, Adam | |
| dc.contributor.author | Šenkeřík, Roman | |
| dc.contributor.author | Pavleska, Tanja | |
| dc.relation.ispartof | Expert Systems with Applications | |
| dc.identifier.issn | 0957-4174 Scopus Sources, Sherpa/RoMEO, JCR | |
| dc.identifier.issn | 1873-6793 Scopus Sources, Sherpa/RoMEO, JCR | |
| dc.date.issued | 2025 | |
| utb.relation.volume | 288 | |
| dc.type | article | |
| dc.language.iso | en | |
| dc.publisher | Elsevier Ltd | |
| dc.identifier.doi | 10.1016/j.eswa.2025.127888 | |
| dc.relation.uri | https://www.sciencedirect.com/science/article/pii/S0957417425015106 | |
| dc.relation.uri | https://www.sciencedirect.com/science/article/pii/S0957417425015106/pdfft?md5=9d3d4938b74ff907e480808ae181e9df&pid=1-s2.0-S0957417425015106-main.pdf | |
| dc.subject | mobile android security | en |
| dc.subject | knowledge graphs embeddings | en |
| dc.subject | machine learning | en |
| dc.subject | Android malware detection | en |
| dc.description.abstract | The rising popularity and open-source model of the Android operating system has made it a main target for attackers creating malware applications. With the mobile industry being an expanding device ecosystem, there is a critical need for developing effective methods to protect against mobile malware. Recognizing the latest approaches and their limitations, we have conducted a comprehensive empirical analysis on the applicability of knowledge graphs for malware detection in view of the influence of the scoring functions, the vector dimension, the stability of the obtained results, the performance of the individual classifiers, and other important time dependencies. In addition, we propose a knowledge-graph based method aimed at improving the quality of classification input data, while offering greater interfacing capabilities with external knowledge and lower computational complexity. The proposed method offers a new perspective on working with Android malware, demonstrating a unique data processing pipeline for malware sample identification and encouraging further innovation in the field. Our findings demonstrate that knowledge graph representation is not only feasible, but also provides well-performing results, remaining competitive with state-of-the-art approaches. | en |
| utb.faculty | Faculty of Applied Informatics | |
| dc.identifier.uri | http://hdl.handle.net/10563/1012479 | |
| utb.identifier.scopus | 2-s2.0-105005861898 | |
| utb.identifier.wok | 001500843200009 | |
| utb.identifier.coden | ESAPE | |
| utb.source | j-scopus | |
| dc.date.accessioned | 2025-10-16T07:25:44Z | |
| dc.date.available | 2025-10-16T07:25:44Z | |
| dc.description.sponsorship | Fakulta aplikované informatiky, Univerzita Tomáše Bati ve Zlíně, FAI; European Commission, EC; Univerzita Tomáše Bati ve Zlíně, UTB; Tomas Bata University in Zlín, TBU, (IGA/CebiaTech/2023/004); Tomas Bata University in Zlín, TBU; The Slovenian Research and Innovation Agency, ARIS, (P2-0098, P2-0037, GC-0001); The Slovenian Research and Innovation Agency, ARIS | |
| dc.description.sponsorship | Internal Grant Agency of Tomas Bata University [IGA/CebiaTech/2023/004]; Faculty of Applied Informatics, Tomas Bata University in Zlin (ailab.fai.utb.cz); Tomas Bata University's Erasmus+ program; European Union; Slovenian Research and Innovation Agency through program [P2-0098, P2-0037, GC-0001] | |
| dc.rights | Attribution-NonCommercial-NoDerivatives 4.0 International | |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
| dc.rights.access | openAccess | |
| utb.contributor.internalauthor | Viktorin, Adam | |
| utb.contributor.internalauthor | Šenkeřík, Roman | |
| utb.fulltext.sponsorship | Funding in direct support of this work: The Internal Grant Agency of Tomas Bata University under the project no. IGA/CebiaTech/2023/004, the resources of A.I.Lab at the Faculty of Applied Informatics, Tomas Bata University in Zlin (ailab.fai.utb.cz), the financial support of the Tomas Bata University’s Erasmus+ program for traineeship mobility supported by the European Union, and the Slovenian Research and Innovation Agency through program grants No. P2-0098 and No. P2-0037, and project No. GC-0001. | |
| utb.wos.affiliation | [Kincl, Jan; Pavleska, Tanja] Jozef Stefan Inst, Lab Open Syst & Networks, Jamova Cesta 39, Ljubljana 1000, Slovenia; [Eftimov, Tome] Jozef Stefan Inst, Comp Syst Dept, Jamova Cesta 39, Ljubljana 1000, Slovenia; [Kincl, Jan] Jozef Stefan Int Postgrad Sch, Jamova Cesta 39, Ljubljana 1000, Slovenia; [Viktorin, Adam; Senkerik, Roman] Tomas Bata Univ Zlin, Fac Appl Informat, nam T G Masaryka 5555, Zlin 76001, Czech Republic; [Kincl, Jan] Univ Newcastle, Sch Informat & Phys Sci, Univ Dr, Newcastle, NSW 2308, Australia | |
| utb.scopus.affiliation | Laboratory for Open Systems and Networks, Jozef Stefan Institute, Jamova Cesta 39, Ljubljana, 1000, Slovenia; The Computer Systems Department, Jozef Stefan Institute, Jamova Cesta 39, Ljubljana, 1000, Slovenia; Jožef Stefan International Postgraduate School, Jamova Cesta 39, Ljubljana, 1000, Slovenia; Faculty of Applied Informatics, Tomas Bata University in Zlin, nam. T. G. Masaryka 5555, Zlin, 76001, Czech Republic; School of Information and Physical Sciences, University of Newcastle, University Dr., Callaghan, Newcastle, 2308, NSW, Australia | |
| utb.fulltext.projects | IGA/CebiaTech/2023/004 | |
| utb.fulltext.projects | P2-0098 | |
| utb.fulltext.projects | P2-0037 | |
| utb.fulltext.projects | GC-0001 |