Publikace UTB
Repozitář publikační činnosti UTB

Open and closed source models for LLM-generated metaheuristics solving engineering optimization problem

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Open and closed source models for LLM-generated metaheuristics solving engineering optimization problem en
dc.contributor.author Šenkeřík, Roman
dc.contributor.author Viktorin, Adam
dc.contributor.author Kadavý, Tomáš
dc.contributor.author Kováč, Jozef
dc.contributor.author Janků, Peter
dc.contributor.author Pekař, Libor
dc.contributor.author Guzowski, Hubert
dc.contributor.author Smolka, Maciej
dc.contributor.author Byrski, Aleksander
dc.contributor.author Pluháček, Michal
dc.relation.ispartof Lecture Notes in Computer Science
dc.identifier.issn 0302-9743 Scopus Sources, Sherpa/RoMEO, JCR
dc.identifier.isbn 978-303190064-8
dc.date.issued 2025
utb.relation.volume 15613 LNCS
dc.citation.spage 372
dc.citation.epage 385
dc.event.title 28th European Conference on Applications of Evolutionary Computation, EvoApplications 2025, held as part of EvoStar 2025
dc.event.location Trieste
utb.event.state-en Italy
utb.event.state-cs Itálie
dc.event.sdate 2025-04-23
dc.event.edate 2025-04-25
dc.type conferenceObject
dc.language.iso en
dc.publisher Springer Science and Business Media Deutschland GmbH
dc.identifier.doi 10.1007/978-3-031-90065-5_23
dc.relation.uri https://link.springer.com/chapter/10.1007/978-3-031-90065-5_23
dc.subject generative AI en
dc.subject GPT en
dc.subject identification en
dc.subject large language model en
dc.subject llama en
dc.subject metaheuristics en
dc.subject OpenAI en
dc.subject optimization en
dc.subject time delay system en
dc.description.abstract This paper explores the applicability of generative AI (genAI), specifically Large Language Models (LLMs), for the automatic generation and configuration of metaheuristic algorithms to address a real-world engineering problem: the optimal parameter estimation of time-delay systems in interconnected heating-cooling loops. The study introduces a pioneering workflow and iterative architecture with feedback within the emerging field of genAI-driven optimization for real optimization problems, eliminating the need for manually crafted or modified algorithms. This automated system empowers domain experts in engineering to solve complex optimization problems with minimal knowledge of optimization algorithms, lowering the barrier to entry for sophisticated algorithm use. We demonstrate how LLMs can generate effective optimizers under conditions like connstrained optimization problems where the solution lies near the boundaries of the search space. Four state-of-the-art LLMs (closed and open-sourced) have been selected for experiments. These are GPT-4o, GPT-4o mini, Claude Sonnet 3.5 and Llama 3.1. All studied LLMs generated metaheuristics that outperformed the initialization baseline optimization method (Random Search and CMA-ES). Notably, the Claude Sonnet 3.5 model generated a metaheuristic with the best mean results, almost matching the performance of the tuned state-of-the-art DISH algorithm, as an example of adaptive Differential Evolution. en
utb.faculty Faculty of Applied Informatics
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1012518
utb.identifier.scopus 2-s2.0-105004253799
dc.date.accessioned 2025-10-16T07:25:46Z
dc.date.available 2025-10-16T07:25:46Z
dc.description.sponsorship Fakulta aplikované informatiky, Univerzita Tomáše Bati ve Zlíně, FAI; Ministerstwo Edukacji i Nauki, MNiSW; AGH University of Krakow, (ARTIQ/0004/2021, UMO-2021/01/2/ST6/00004); Grantová Agentura České Republiky, GAČR, (GF21-45465L); Grantová Agentura České Republiky, GAČR; Univerzita Tomáše Bati ve Zlíně, UTB, (Zlin-IGA/CebiaTech/2023/004); Univerzita Tomáše Bati ve Zlíně, UTB; Narodowe Centrum Nauki, NCN, (2020/39/I/ST7/02285); Narodowe Centrum Nauki, NCN
utb.ou A.I.Lab
utb.ou Department of Automation and Control Engineering
utb.contributor.internalauthor Šenkeřík, Roman
utb.contributor.internalauthor Viktorin, Adam
utb.contributor.internalauthor Kadavý, Tomáš
utb.contributor.internalauthor Kováč, Jozef
utb.contributor.internalauthor Janků, Peter
utb.contributor.internalauthor Pekař, Libor
utb.fulltext.sponsorship The research presented in this paper was supported by: the Internal Grant Agency of the Tomas Bata University in Zlin - IGA/CebiaTech/2023/004, and resources of A.I.Lab at the Faculty of Applied Informatics, Tomas Bata University in Zlin (ailab.fai.utb.cz). It was also partially supported by Czech Science Foundation (GACR) project no: GF21-45465L and NCN project no: 2020/39/I/ST7/02285, Polish Ministry of Education and Science funds assigned to AGH University of Krakow, and further by program “Excellence initiative-research university” for the AGH University of Krakow as well as the ARTIQ project: UMO-2021/01/2/ST6/00004 and ARTIQ/0004/2021.
utb.scopus.affiliation A.I.Lab, Faculty of Applied Informatics, Tomas Bata University, Zlin, Czech Republic; Department of Automation and Control Engineering, Faculty of Applied Informatics, Tomas Bata University, Zlin, Czech Republic; Faculty of Computer Science, AGH University of Krakow, Krakow, Poland; Center of Excellence in Artificial Intelligence, AGH University of Krakow, Krakow, Poland
utb.fulltext.projects IGA/CebiaTech/2023/004
utb.fulltext.projects GF21-45465L
utb.fulltext.projects NCN 2020/39/I/ST7/02285
utb.fulltext.projects UMO-2021/01/2/ST6/00004
utb.fulltext.projects ARTIQ/0004/2021
Find Full text

Soubory tohoto záznamu

Soubory Velikost Formát Zobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Zobrazit minimální záznam