Kontaktujte nás | Jazyk: čeština English
dc.title | Open and closed source models for LLM-generated metaheuristics solving engineering optimization problem | en |
dc.contributor.author | Šenkeřík, Roman | |
dc.contributor.author | Viktorin, Adam | |
dc.contributor.author | Kadavý, Tomáš | |
dc.contributor.author | Kováč, Jozef | |
dc.contributor.author | Janků, Peter | |
dc.contributor.author | Pekař, Libor | |
dc.contributor.author | Guzowski, Hubert | |
dc.contributor.author | Smolka, Maciej | |
dc.contributor.author | Byrski, Aleksander | |
dc.contributor.author | Pluháček, Michal | |
dc.relation.ispartof | Lecture Notes in Computer Science | |
dc.identifier.issn | 0302-9743 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.identifier.isbn | 978-303190064-8 | |
dc.date.issued | 2025 | |
utb.relation.volume | 15613 LNCS | |
dc.citation.spage | 372 | |
dc.citation.epage | 385 | |
dc.event.title | 28th European Conference on Applications of Evolutionary Computation, EvoApplications 2025, held as part of EvoStar 2025 | |
dc.event.location | Trieste | |
utb.event.state-en | Italy | |
utb.event.state-cs | Itálie | |
dc.event.sdate | 2025-04-23 | |
dc.event.edate | 2025-04-25 | |
dc.type | conferenceObject | |
dc.language.iso | en | |
dc.publisher | Springer Science and Business Media Deutschland GmbH | |
dc.identifier.doi | 10.1007/978-3-031-90065-5_23 | |
dc.relation.uri | https://link.springer.com/chapter/10.1007/978-3-031-90065-5_23 | |
dc.subject | generative AI | en |
dc.subject | GPT | en |
dc.subject | identification | en |
dc.subject | large language model | en |
dc.subject | llama | en |
dc.subject | metaheuristics | en |
dc.subject | OpenAI | en |
dc.subject | optimization | en |
dc.subject | time delay system | en |
dc.description.abstract | This paper explores the applicability of generative AI (genAI), specifically Large Language Models (LLMs), for the automatic generation and configuration of metaheuristic algorithms to address a real-world engineering problem: the optimal parameter estimation of time-delay systems in interconnected heating-cooling loops. The study introduces a pioneering workflow and iterative architecture with feedback within the emerging field of genAI-driven optimization for real optimization problems, eliminating the need for manually crafted or modified algorithms. This automated system empowers domain experts in engineering to solve complex optimization problems with minimal knowledge of optimization algorithms, lowering the barrier to entry for sophisticated algorithm use. We demonstrate how LLMs can generate effective optimizers under conditions like connstrained optimization problems where the solution lies near the boundaries of the search space. Four state-of-the-art LLMs (closed and open-sourced) have been selected for experiments. These are GPT-4o, GPT-4o mini, Claude Sonnet 3.5 and Llama 3.1. All studied LLMs generated metaheuristics that outperformed the initialization baseline optimization method (Random Search and CMA-ES). Notably, the Claude Sonnet 3.5 model generated a metaheuristic with the best mean results, almost matching the performance of the tuned state-of-the-art DISH algorithm, as an example of adaptive Differential Evolution. | en |
utb.faculty | Faculty of Applied Informatics | |
utb.faculty | Faculty of Applied Informatics | |
dc.identifier.uri | http://hdl.handle.net/10563/1012518 | |
utb.identifier.scopus | 2-s2.0-105004253799 | |
dc.date.accessioned | 2025-10-16T07:25:46Z | |
dc.date.available | 2025-10-16T07:25:46Z | |
dc.description.sponsorship | Fakulta aplikované informatiky, Univerzita Tomáše Bati ve Zlíně, FAI; Ministerstwo Edukacji i Nauki, MNiSW; AGH University of Krakow, (ARTIQ/0004/2021, UMO-2021/01/2/ST6/00004); Grantová Agentura České Republiky, GAČR, (GF21-45465L); Grantová Agentura České Republiky, GAČR; Univerzita Tomáše Bati ve Zlíně, UTB, (Zlin-IGA/CebiaTech/2023/004); Univerzita Tomáše Bati ve Zlíně, UTB; Narodowe Centrum Nauki, NCN, (2020/39/I/ST7/02285); Narodowe Centrum Nauki, NCN | |
utb.ou | A.I.Lab | |
utb.ou | Department of Automation and Control Engineering | |
utb.contributor.internalauthor | Šenkeřík, Roman | |
utb.contributor.internalauthor | Viktorin, Adam | |
utb.contributor.internalauthor | Kadavý, Tomáš | |
utb.contributor.internalauthor | Kováč, Jozef | |
utb.contributor.internalauthor | Janků, Peter | |
utb.contributor.internalauthor | Pekař, Libor | |
utb.fulltext.sponsorship | The research presented in this paper was supported by: the Internal Grant Agency of the Tomas Bata University in Zlin - IGA/CebiaTech/2023/004, and resources of A.I.Lab at the Faculty of Applied Informatics, Tomas Bata University in Zlin (ailab.fai.utb.cz). It was also partially supported by Czech Science Foundation (GACR) project no: GF21-45465L and NCN project no: 2020/39/I/ST7/02285, Polish Ministry of Education and Science funds assigned to AGH University of Krakow, and further by program “Excellence initiative-research university” for the AGH University of Krakow as well as the ARTIQ project: UMO-2021/01/2/ST6/00004 and ARTIQ/0004/2021. | |
utb.scopus.affiliation | A.I.Lab, Faculty of Applied Informatics, Tomas Bata University, Zlin, Czech Republic; Department of Automation and Control Engineering, Faculty of Applied Informatics, Tomas Bata University, Zlin, Czech Republic; Faculty of Computer Science, AGH University of Krakow, Krakow, Poland; Center of Excellence in Artificial Intelligence, AGH University of Krakow, Krakow, Poland | |
utb.fulltext.projects | IGA/CebiaTech/2023/004 | |
utb.fulltext.projects | GF21-45465L | |
utb.fulltext.projects | NCN 2020/39/I/ST7/02285 | |
utb.fulltext.projects | UMO-2021/01/2/ST6/00004 | |
utb.fulltext.projects | ARTIQ/0004/2021 |
Soubory | Velikost | Formát | Zobrazit |
---|---|---|---|
K tomuto záznamu nejsou připojeny žádné soubory. |