Kontaktujte nás | Jazyk: čeština English
dc.title | Comparison of hyperparameter tuning optimization methods for LSTM and stock price prediction | en |
dc.contributor.author | Li, Peng | |
dc.contributor.author | Viktorin, Adam | |
dc.contributor.author | Šenkeřík, Roman | |
dc.relation.ispartof | Artificial Intelligence and Soft Computing, ICAISC 2024, Pt II | |
dc.identifier.issn | 2945-9133 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.identifier.issn | 1611-3349 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.identifier.isbn | 9789819698936 | |
dc.identifier.isbn | 9789819698042 | |
dc.identifier.isbn | 9789819698110 | |
dc.identifier.isbn | 9789819698905 | |
dc.identifier.isbn | 9789819512324 | |
dc.identifier.isbn | 9783032026019 | |
dc.identifier.isbn | 9783032008909 | |
dc.identifier.isbn | 9783031915802 | |
dc.identifier.isbn | 9789819698141 | |
dc.identifier.isbn | 9783031984136 | |
dc.date.issued | 2025 | |
utb.relation.volume | 15164 | |
dc.citation.spage | 195 | |
dc.citation.epage | 208 | |
dc.event.title | 23rd International Conference on Artificial Intelligence and Soft Computing, ICAISC 2024 | |
dc.event.location | Zakopane | |
utb.event.state-en | Polsko | |
utb.event.state-cs | Zakopané | |
dc.event.sdate | 2024-06-16 | |
dc.event.edate | 2024-06-20 | |
dc.type | conferenceObject | |
dc.language.iso | en | |
dc.publisher | Springer Science and Business Media Deutschland GmbH | |
dc.identifier.doi | 10.1007/978-3-031-84353-2_17 | |
dc.relation.uri | https://link.springer.com/chapter/10.1007/978-3-031-84353-2_17 | |
dc.subject | neural network | en |
dc.subject | LSTM | en |
dc.subject | hyperparameter tuning | en |
dc.subject | Nevergrad | en |
dc.subject | optimization | en |
dc.subject | time series analysis | en |
dc.subject | stock price prediction | en |
dc.subject | Bioinformatics | en |
dc.subject | Costs | en |
dc.subject | Covariance Matrix | en |
dc.subject | Electronic Trading | en |
dc.subject | Financial Markets | en |
dc.subject | Forecasting | en |
dc.subject | Mean Square Error | en |
dc.subject | Tuning | en |
dc.subject | Hyper-parameter | en |
dc.subject | Hyperparameter Tuning | en |
dc.subject | Memory Modeling | en |
dc.subject | Neural-networks | en |
dc.subject | Nevergrad | en |
dc.subject | Optimisations | en |
dc.subject | Performance | en |
dc.subject | Short Term Memory | en |
dc.subject | Stock Price Prediction | en |
dc.subject | Time-series Analysis | en |
dc.subject | Neural Networks | en |
dc.subject | Optimization | en |
dc.subject | Time Series Analysis | en |
dc.description.abstract | This paper investigates using Long Short-Term Memory (LSTM) networks for predicting stock prices, focusing on major stocks like AAPL, MSFT, TSLA, META, and GOOG from 2016 to 2021. We employ several technical analysis indicators, such as moving averages, the relative strength index, and others, as inputs to our LSTM model. The study involves data preprocessing, optimization, and tuning of ten different hyperparameters to enhance the performance of LSTM model. A comparative analysis of optimization techniques, including standard random search, Bayesian, Nevergrad optimization, covariance matrix adaptation optimization, and other bio-inspired algorithms, shows variations in performance across most datasets. Performance is measured using typical statistical metrics like mean squared error, R2 score, and others, with results showing varying prediction accuracies among different stocks. The study highlights the critical influence of data quality on LSTM performance and suggests further research into optimal hyperparameter tuning for enhancing AI-driven financial analytics. | en |
utb.faculty | Faculty of Applied Informatics | |
dc.identifier.uri | http://hdl.handle.net/10563/1012535 | |
utb.identifier.scopus | 2-s2.0-105010197817 | |
utb.identifier.wok | 001535042200017 | |
utb.source | C-wok | |
dc.date.accessioned | 2025-10-16T07:25:47Z | |
dc.date.available | 2025-10-16T07:25:47Z | |
dc.description.sponsorship | This work was supported by the Internal Grant Agency of the Tomas Bata University in Zlin, project number IGA/CebiaTech/2023/004, and further by resources of A.I.Lab (https://ailab.fai.utb.cz/). During the preparation of this work, the authors used OpenAI ChatGPT 4.0 in order to improve language and readability. After using this tool/service, the authors reviewed and edited the content as needed and take full responsibility for the content of the publication. | |
dc.description.sponsorship | Internal Grant Agency of the Tomas Bata University in Zlin [IGA/CebiaTech/2023/004] | |
utb.contributor.internalauthor | Li, Peng | |
utb.contributor.internalauthor | Viktorin, Adam | |
utb.contributor.internalauthor | Šenkeřík, Roman | |
utb.fulltext.sponsorship | This work was supported by the Internal Grant Agency of the Tomas Bata University in Zlin, project number IGA/CebiaTech/2023/004, and further by resources of A.I.Lab (https://ailab.fai.utb.cz/). During the preparation of this work, the authors used OpenAI ChatGPT 4.0 in order to improve language and readability. After using this tool/service, the authors reviewed and edited the content as needed and take full responsibility for the content of the publication. | |
utb.wos.affiliation | [Li, Peng; Viktorin, Adam; Senkerik, Roman] Tomas Bata Univ Zlin, Nam TGM 5555, Zlin 76001, Czech Republic | |
utb.scopus.affiliation | Tomas Bata University in Zlin, Zlin, Czech Republic | |
utb.fulltext.projects | IGA/CebiaTech/2023/004 |
Soubory | Velikost | Formát | Zobrazit |
---|---|---|---|
K tomuto záznamu nejsou připojeny žádné soubory. |