Publikace UTB
Repozitář publikační činnosti UTB

Comparison of hyperparameter tuning optimization methods for LSTM and stock price prediction

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Comparison of hyperparameter tuning optimization methods for LSTM and stock price prediction en
dc.contributor.author Li, Peng
dc.contributor.author Viktorin, Adam
dc.contributor.author Šenkeřík, Roman
dc.relation.ispartof Artificial Intelligence and Soft Computing, ICAISC 2024, Pt II
dc.identifier.issn 2945-9133 Scopus Sources, Sherpa/RoMEO, JCR
dc.identifier.issn 1611-3349 Scopus Sources, Sherpa/RoMEO, JCR
dc.identifier.isbn 9789819698936
dc.identifier.isbn 9789819698042
dc.identifier.isbn 9789819698110
dc.identifier.isbn 9789819698905
dc.identifier.isbn 9789819512324
dc.identifier.isbn 9783032026019
dc.identifier.isbn 9783032008909
dc.identifier.isbn 9783031915802
dc.identifier.isbn 9789819698141
dc.identifier.isbn 9783031984136
dc.date.issued 2025
utb.relation.volume 15164
dc.citation.spage 195
dc.citation.epage 208
dc.event.title 23rd International Conference on Artificial Intelligence and Soft Computing, ICAISC 2024
dc.event.location Zakopane
utb.event.state-en Polsko
utb.event.state-cs Zakopané
dc.event.sdate 2024-06-16
dc.event.edate 2024-06-20
dc.type conferenceObject
dc.language.iso en
dc.publisher Springer Science and Business Media Deutschland GmbH
dc.identifier.doi 10.1007/978-3-031-84353-2_17
dc.relation.uri https://link.springer.com/chapter/10.1007/978-3-031-84353-2_17
dc.subject neural network en
dc.subject LSTM en
dc.subject hyperparameter tuning en
dc.subject Nevergrad en
dc.subject optimization en
dc.subject time series analysis en
dc.subject stock price prediction en
dc.subject Bioinformatics en
dc.subject Costs en
dc.subject Covariance Matrix en
dc.subject Electronic Trading en
dc.subject Financial Markets en
dc.subject Forecasting en
dc.subject Mean Square Error en
dc.subject Tuning en
dc.subject Hyper-parameter en
dc.subject Hyperparameter Tuning en
dc.subject Memory Modeling en
dc.subject Neural-networks en
dc.subject Nevergrad en
dc.subject Optimisations en
dc.subject Performance en
dc.subject Short Term Memory en
dc.subject Stock Price Prediction en
dc.subject Time-series Analysis en
dc.subject Neural Networks en
dc.subject Optimization en
dc.subject Time Series Analysis en
dc.description.abstract This paper investigates using Long Short-Term Memory (LSTM) networks for predicting stock prices, focusing on major stocks like AAPL, MSFT, TSLA, META, and GOOG from 2016 to 2021. We employ several technical analysis indicators, such as moving averages, the relative strength index, and others, as inputs to our LSTM model. The study involves data preprocessing, optimization, and tuning of ten different hyperparameters to enhance the performance of LSTM model. A comparative analysis of optimization techniques, including standard random search, Bayesian, Nevergrad optimization, covariance matrix adaptation optimization, and other bio-inspired algorithms, shows variations in performance across most datasets. Performance is measured using typical statistical metrics like mean squared error, R2 score, and others, with results showing varying prediction accuracies among different stocks. The study highlights the critical influence of data quality on LSTM performance and suggests further research into optimal hyperparameter tuning for enhancing AI-driven financial analytics. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1012535
utb.identifier.scopus 2-s2.0-105010197817
utb.identifier.wok 001535042200017
utb.source C-wok
dc.date.accessioned 2025-10-16T07:25:47Z
dc.date.available 2025-10-16T07:25:47Z
dc.description.sponsorship This work was supported by the Internal Grant Agency of the Tomas Bata University in Zlin, project number IGA/CebiaTech/2023/004, and further by resources of A.I.Lab (https://ailab.fai.utb.cz/). During the preparation of this work, the authors used OpenAI ChatGPT 4.0 in order to improve language and readability. After using this tool/service, the authors reviewed and edited the content as needed and take full responsibility for the content of the publication.
dc.description.sponsorship Internal Grant Agency of the Tomas Bata University in Zlin [IGA/CebiaTech/2023/004]
utb.contributor.internalauthor Li, Peng
utb.contributor.internalauthor Viktorin, Adam
utb.contributor.internalauthor Šenkeřík, Roman
utb.fulltext.sponsorship This work was supported by the Internal Grant Agency of the Tomas Bata University in Zlin, project number IGA/CebiaTech/2023/004, and further by resources of A.I.Lab (https://ailab.fai.utb.cz/). During the preparation of this work, the authors used OpenAI ChatGPT 4.0 in order to improve language and readability. After using this tool/service, the authors reviewed and edited the content as needed and take full responsibility for the content of the publication.
utb.wos.affiliation [Li, Peng; Viktorin, Adam; Senkerik, Roman] Tomas Bata Univ Zlin, Nam TGM 5555, Zlin 76001, Czech Republic
utb.scopus.affiliation Tomas Bata University in Zlin, Zlin, Czech Republic
utb.fulltext.projects IGA/CebiaTech/2023/004
Find Full text

Soubory tohoto záznamu

Soubory Velikost Formát Zobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Zobrazit minimální záznam