Publikace UTB
Repozitář publikační činnosti UTB

Advanced keypoint(s) recognition with KeyBERT(+): A comparative study

Repozitář DSpace/Manakin

Zobrazit minimální záznam


dc.title Advanced keypoint(s) recognition with KeyBERT(+): A comparative study en
dc.contributor.author Amur, Zaira Hassan
dc.contributor.author Yew, Kwang Hooi
dc.contributor.author Soomro, Gul Muhammad
dc.contributor.author Bhanbhro, Hina
dc.contributor.author Pitafi, Shahneela
dc.contributor.author Sohu, Najamuddin
dc.relation.ispartof Lecture Notes in Electrical Engineering
dc.identifier.issn 1876-1119 Scopus Sources, Sherpa/RoMEO, JCR
dc.identifier.issn 1876-1100 Scopus Sources, Sherpa/RoMEO, JCR
dc.identifier.isbn 9789819680023
dc.identifier.isbn 9789819658473
dc.identifier.isbn 9789819600571
dc.identifier.isbn 9789819644292
dc.identifier.isbn 9789819637577
dc.identifier.isbn 9783319030135
dc.identifier.isbn 9783642363283
dc.identifier.isbn 9789819648115
dc.identifier.isbn 9783642384653
dc.identifier.isbn 9789819920914
dc.date.issued 2025
utb.relation.volume 1417 LNEE
dc.citation.spage 9
dc.citation.epage 20
dc.event.title 1st International Conference on Smart Cities, ICSC 2024
dc.event.location Kota Kinabalu
utb.event.state-en Malajsie
utb.event.state-cs Kota Kinabalu
dc.event.sdate 2024-09-10
dc.event.edate 2024-09-11
dc.type conferenceObject
dc.language.iso en
dc.publisher Springer Science and Business Media Deutschland GmbH
dc.identifier.doi 10.1007/978-981-96-5848-0_2
dc.relation.uri https://link.springer.com/chapter/10.1007/978-981-96-5848-0_2
dc.subject data mining en
dc.subject data-driven en
dc.subject keybert en
dc.subject keypoints extraction en
dc.subject keywords en
dc.subject machine learning en
dc.subject NLP en
dc.subject artificial intelligence en
dc.subject classification (of information) en
dc.subject engineering education en
dc.subject engineering research en
dc.subject extraction en
dc.subject information retrieval en
dc.subject information retrieval systems en
dc.subject learning systems en
dc.subject natural language processing systems en
dc.subject search engines en
dc.subject comparatives studies en
dc.subject data driven en
dc.subject document classification en
dc.subject keybert en
dc.subject keypoint extraction en
dc.subject keypoints en
dc.subject keyword en
dc.subject keywords extraction en
dc.subject machine-learning en
dc.subject natural language processing applications en
dc.subject data mining en
dc.description.abstract In many natural language processing applications, keyword extraction plays a crucial role in information retrieval, document classification, and sum- marization. This study investigates the efficacy of three cutting-edge keyword extraction methods: KeyBERT, YAKE (Yet Another Keyword Extractor), and RAKE (Rapid Automatic Keyword Extraction), along with a newly designed model, KeyBERT(+), which removes duplicates and offers improved perfor- mance. A comparative analysis was conducted to assess the performance of these techniques in identifying keywords from student and reference answers—a sce- nario particularly relevant to educational feedback and assessment systems. The comparison is based on two key metrics: the number of key points extracted and the extraction time. The findings demonstrate that KeyBERT(+) outperforms the other methods, providing valuable guidance for selecting appropriate keyword extraction techniques in educational contexts. en
utb.faculty Faculty of Applied Informatics
dc.identifier.uri http://hdl.handle.net/10563/1012534
utb.identifier.scopus 2-s2.0-105012919760
dc.date.accessioned 2025-10-16T07:25:47Z
dc.date.available 2025-10-16T07:25:47Z
dc.description.sponsorship The authors are grateful to Yayasan Universiti Teknologi PATRONAS, research grant 015PBC-005 for funding and supporting this research.
utb.ou Department of Artificial Intelligence
utb.contributor.internalauthor Soomro, Gul Muhammad
utb.fulltext.sponsorship The authors are grateful to Yayasan Universiti Teknologi PATRONAS, research grant 015PBC-005 for funding and supporting this research.
utb.scopus.affiliation Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia; Tomas Bata University in Zlin, Zlin, Czech Republic; Government College University Hyderabad, Hyderabad, Pakistan
utb.fulltext.projects 015PBC-005
Find Full text

Soubory tohoto záznamu

Soubory Velikost Formát Zobrazit

K tomuto záznamu nejsou připojeny žádné soubory.

Zobrazit minimální záznam