Kontaktujte nás | Jazyk: čeština English
dc.title | Advanced keypoint(s) recognition with KeyBERT(+): A comparative study | en |
dc.contributor.author | Amur, Zaira Hassan | |
dc.contributor.author | Yew, Kwang Hooi | |
dc.contributor.author | Soomro, Gul Muhammad | |
dc.contributor.author | Bhanbhro, Hina | |
dc.contributor.author | Pitafi, Shahneela | |
dc.contributor.author | Sohu, Najamuddin | |
dc.relation.ispartof | Lecture Notes in Electrical Engineering | |
dc.identifier.issn | 1876-1119 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.identifier.issn | 1876-1100 Scopus Sources, Sherpa/RoMEO, JCR | |
dc.identifier.isbn | 9789819680023 | |
dc.identifier.isbn | 9789819658473 | |
dc.identifier.isbn | 9789819600571 | |
dc.identifier.isbn | 9789819644292 | |
dc.identifier.isbn | 9789819637577 | |
dc.identifier.isbn | 9783319030135 | |
dc.identifier.isbn | 9783642363283 | |
dc.identifier.isbn | 9789819648115 | |
dc.identifier.isbn | 9783642384653 | |
dc.identifier.isbn | 9789819920914 | |
dc.date.issued | 2025 | |
utb.relation.volume | 1417 LNEE | |
dc.citation.spage | 9 | |
dc.citation.epage | 20 | |
dc.event.title | 1st International Conference on Smart Cities, ICSC 2024 | |
dc.event.location | Kota Kinabalu | |
utb.event.state-en | Malajsie | |
utb.event.state-cs | Kota Kinabalu | |
dc.event.sdate | 2024-09-10 | |
dc.event.edate | 2024-09-11 | |
dc.type | conferenceObject | |
dc.language.iso | en | |
dc.publisher | Springer Science and Business Media Deutschland GmbH | |
dc.identifier.doi | 10.1007/978-981-96-5848-0_2 | |
dc.relation.uri | https://link.springer.com/chapter/10.1007/978-981-96-5848-0_2 | |
dc.subject | data mining | en |
dc.subject | data-driven | en |
dc.subject | keybert | en |
dc.subject | keypoints extraction | en |
dc.subject | keywords | en |
dc.subject | machine learning | en |
dc.subject | NLP | en |
dc.subject | artificial intelligence | en |
dc.subject | classification (of information) | en |
dc.subject | engineering education | en |
dc.subject | engineering research | en |
dc.subject | extraction | en |
dc.subject | information retrieval | en |
dc.subject | information retrieval systems | en |
dc.subject | learning systems | en |
dc.subject | natural language processing systems | en |
dc.subject | search engines | en |
dc.subject | comparatives studies | en |
dc.subject | data driven | en |
dc.subject | document classification | en |
dc.subject | keybert | en |
dc.subject | keypoint extraction | en |
dc.subject | keypoints | en |
dc.subject | keyword | en |
dc.subject | keywords extraction | en |
dc.subject | machine-learning | en |
dc.subject | natural language processing applications | en |
dc.subject | data mining | en |
dc.description.abstract | In many natural language processing applications, keyword extraction plays a crucial role in information retrieval, document classification, and sum- marization. This study investigates the efficacy of three cutting-edge keyword extraction methods: KeyBERT, YAKE (Yet Another Keyword Extractor), and RAKE (Rapid Automatic Keyword Extraction), along with a newly designed model, KeyBERT(+), which removes duplicates and offers improved perfor- mance. A comparative analysis was conducted to assess the performance of these techniques in identifying keywords from student and reference answers—a sce- nario particularly relevant to educational feedback and assessment systems. The comparison is based on two key metrics: the number of key points extracted and the extraction time. The findings demonstrate that KeyBERT(+) outperforms the other methods, providing valuable guidance for selecting appropriate keyword extraction techniques in educational contexts. | en |
utb.faculty | Faculty of Applied Informatics | |
dc.identifier.uri | http://hdl.handle.net/10563/1012534 | |
utb.identifier.scopus | 2-s2.0-105012919760 | |
dc.date.accessioned | 2025-10-16T07:25:47Z | |
dc.date.available | 2025-10-16T07:25:47Z | |
dc.description.sponsorship | The authors are grateful to Yayasan Universiti Teknologi PATRONAS, research grant 015PBC-005 for funding and supporting this research. | |
utb.ou | Department of Artificial Intelligence | |
utb.contributor.internalauthor | Soomro, Gul Muhammad | |
utb.fulltext.sponsorship | The authors are grateful to Yayasan Universiti Teknologi PATRONAS, research grant 015PBC-005 for funding and supporting this research. | |
utb.scopus.affiliation | Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia; Tomas Bata University in Zlin, Zlin, Czech Republic; Government College University Hyderabad, Hyderabad, Pakistan | |
utb.fulltext.projects | 015PBC-005 |
Soubory | Velikost | Formát | Zobrazit |
---|---|---|---|
K tomuto záznamu nejsou připojeny žádné soubory. |